Enonce
Une expression arithmétique ne comportant que les quatre opérations +, −, ×, ÷ peut être représentée sous forme d’arbre binaire. Les nœuds internes sont des opérateurs et les feuilles sont des nombres. Dans un tel arbre, la disposition des nœuds joue le rôle des parenthèses que nous connaissons bien.
En parcourant en profondeur infixe l’arbre binaire ci-dessus, on retrouve l’expression notée habituellement :
La classe Noeud
ci-après permet d’implémenter une structure
d’arbre binaire.
Compléter la fonction récursive expression_infixe
qui prend
en paramètre un objet de la classe Noeud
et qui renvoie
l’expression arithmétique représentée par l’arbre binaire passé
en paramètre, sous forme d’une chaîne de caractères contenant
des parenthèses.
Résultat attendu avec l’arbre ci-dessus :
>>> e = Noeud(Noeud(Noeud(None, 3, None), '*', Noeud(Noeud(None, 8, None),
'+', Noeud(None, 7, None))), '-', Noeud(Noeud(None, 2, None), '+',
Noeud(None, 1, None)))
>>> expression_infixe(e)
'((3*(8+7))-(2+1))'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|